Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons.

نویسندگان

  • Peer Wulff
  • Alexey A Ponomarenko
  • Marlene Bartos
  • Tatiana M Korotkova
  • Elke C Fuchs
  • Florian Bähner
  • Martin Both
  • Adriano B L Tort
  • Nancy J Kopell
  • William Wisden
  • Hannah Monyer
چکیده

Hippocampal theta (5-10 Hz) and gamma (35-85 Hz) oscillations depend on an inhibitory network of GABAergic interneurons. However, the lack of methods for direct and cell-type-specific interference with inhibition has prevented better insights that help link synaptic and cellular properties with network function. Here, we generated genetically modified mice (PV-Deltagamma(2)) in which synaptic inhibition was ablated in parvalbumin-positive (PV+) interneurons. Hippocampal local field potential and unit recordings in the CA1 area of freely behaving mice revealed that theta rhythm was strongly reduced in these mice. The characteristic coupling of theta and gamma oscillations was strongly altered in PV-Deltagamma(2) mice more than could be accounted for by the reduction in theta rhythm only. Surprisingly, gamma oscillations were not altered. These data indicate that synaptic inhibition onto PV+ interneurons is indispensable for theta- and its coupling to gamma oscillations but not for rhythmic gamma-activity in the hippocampus. Similar alterations in rhythmic activity were obtained in a computational hippocampal network model mimicking the genetic modification, suggesting that intrahippocampal networks might contribute to these effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented hippocampal ripple oscillations in mice with reduced fast excitation onto parvalbumin-positive cells.

Generation of fast network oscillations in the hippocampus relies on interneurons, but the underlying specific synaptic mechanisms are not established. The excitatory recruitment of fast-spiking interneurons during hippocampal sharp waves has been suggested to be critical for the generation of 140-200 Hz ("ripple") oscillations in the CA1 area. To directly test this, we used genetically modifie...

متن کامل

Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit

The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct inter...

متن کامل

NMDA Receptor Ablation on Parvalbumin-Positive Interneurons Impairs Hippocampal Synchrony, Spatial Representations, and Working Memory

Activity of parvalbumin-positive hippocampal interneurons is critical for network synchronization but the receptors involved therein have remained largely unknown. Here we report network and behavioral deficits in mice with selective ablation of NMDA receptors in parvalbumin-positive interneurons (NR1(PVCre-/-)). Recordings of local field potentials and unitary neuronal activity in the hippocam...

متن کامل

Cell-Type-Specific Recruitment of Amygdala Interneurons to Hippocampal Theta Rhythm and Noxious Stimuli In Vivo

Neuronal synchrony in the basolateral amygdala (BLA) is critical for emotional behavior. Coordinated theta-frequency oscillations between the BLA and the hippocampus and precisely timed integration of salient sensory stimuli in the BLA are involved in fear conditioning. We characterized GABAergic interneuron types of the BLA and determined their contribution to shaping these network activities....

متن کامل

Hippocampal Theta Modulation of Neocortical Spike Times and Gamma Rhythm: A Biophysical Model Study

The hippocampal theta and neocortical gamma rhythms are two prominent examples of oscillatory neuronal activity. The hippocampus has often been hypothesized to influence neocortical networks by its theta rhythm, and, recently, evidence for such a direct influence has been found. We examined a possible mechanism for this influence by means of a biophysical model study using conductance-based mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 9  شماره 

صفحات  -

تاریخ انتشار 2009